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Abstract

The effect of ring curvature on the coherent perturbations of a
ring of relativistic particles is studied within the framework
of the linearized Vlasov equation. Finite curvature is shown to
have a minor effect on the dynamics of the "negative mass" mode;
the "transverse" mode in radial direction, however, is found to
be coupled with a simultaneous longitudinal density modulation
which modifies the dispersion relation. In the limit of small
mode frequency (w/Q << 1) Landau damping of the resistive wall
or electron ion instability is shown to require a threshold dis-

persion which sensitively depends on the effect of curvature.




1. Introduction

Longitudinal and transverse coherent oscillations of intense
particle beams have been investigated by many authors with re-

spect to the negative mass instability 1’2), the longitudinal

3,4)

and transverse resistive instabilities and the electron-

5)

ion instability , which may be important limiting factors for

accelerators with pronounced collective behaviour.

In the existing literature these instabilities are usually trea-
ted within the limit of negligible beam curvature. This straight-
beam limit is an approximation sufficient to describe many real
situations. Rings of highly relativistic electrons, however,

like those used in the electron ring accelerator (ERA) devices
are significantly influenced by curvature effects, unless there
is strong cancellation of the electron space charge by an ion

background. In the Garching ERA device 6)

axial focussing of the
ring in the accelerating structure was found to be possible only
if the axially defocussing effect of curvature is compensated by
images on an electric image cylinder ("squirrel cage") close to
the ring. Not only the equilibrium but also the stability pro-
perties of such electron rings may critically depend on curvature
effects. In particular one must expect coupling of longitudinal
and radial coherent oscillations owing to the centrifugal force
term in the single particle equations of motion. This paper
treats the analysis of coherent modes within the framework of

the relativistic Vlasov equation in cylindrical geometry. In con-
trast with previous works curvature is correctly taken into
account in the Vlasov analysis. The curvature-modified disper-
sion relations of the most important modes are derived. In a
special case (low frequency radial mode) it is shown that Landau
damping by a finite energy spread may be suppressed by curvature
effects, which renders the mode (linearly) unstable with respect

to the resistive wall and electron-ion instability.




2. Basic Equations and Equilibrium

The distribution in phase space of one species of relativistic
particles with charge e interacting through their collective
electric and magnetic field is described by the relativistic

#
Vlasov equation in cylindrical geometry 7'8):
3f 3f o« 3f « 3 f e of <Jf Oeef)i i
(1) g+ T35 * Yo * %% * Yohn, * %5z T Ysm, T O
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with electric and magnetic fields satisfying the Maxwell equa-

tions with appropriate boundary conditions

&

div E = 4men; curl B 4ty +

0

t

(3)
= - 3B. 4 =
curl E = ) div B = 0O

and particle density and current density computed selfconsistent-

ly with the Vlasov equation

n(r,6,z,t)

Il

Jf du du, du
r ) z
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A rotationally symmetric equilibrium distribution can be des-
cribed in terms of two constants of the motion, the total energy

and the canonical angular momentum 9)

*
with units such that the speed of light becomes unity




0

(5) H  =my + e ¢°
(6) Py=mru, +er Af
(7) FY %= FO(HY, Pg)

Next we replace ug

by P6 according to (6). The energy

H°(r,z,ur,Pe,uz) is in general a complicated function of its

variables. With regard to the linearization of the problem it

is desirable to expand H° about the minimum value of energy

for a given Pe.
(8) SH = O
yields a solution

(9) u = u = 0; r

if there is symmetry

The variational problem

= R(Pe); Z

"
o

in z and no applied Ez—field.

This corresponds to purely circular motion at radius R(Pe) with

zero order values uoe

(Pg)r Yo (Pg)y Hg(Pe) defined by

P, = mRu_, + eRAg(R,O)
2
= oo 3 E--u B° (R,0) + eE’(R,0) = O
YoR Yo o6z ' s
(10)
2 _
Yo = 1 + uoe

g 0
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We are now able to expand H’ about Hg if we define the relative

coordinate

(11) x = r - R(Pe)




and obtain

0 _ 110 0
(12) H" = HO(PG) + H (x,ur,z,uz,Pe)

Hf is the transverse energy which can be written in leading

order as
0 = 2 2 2 2
(13) HL = u1x + azur + a3z -+ a4uz

with ai = ai(Pe) (i =1...4).

(13) holds for small betatron oscillation amplitudes which we
shall assume in the following. We observe that in this order Hi
is also a constant of the motion. In addition it can be written
as sum of the radial and axial oscillation energies which are

constants as well:

0 = 2 2
HLr = a1x + uzur
(14)
0 = 2 2
le = a3z + a4uz

We can now specify f° as a function

0 _ £0 0 17 O
(15) £° = £ (Pe,le,HLz)

with the following restrictions

(a) £° non-negative
(b) £° is zero outside a finite range of Pe values (such
< <
that O < R ., 2 R(Pg) Z R )

A6 (c) £° is non-vanishing only within ranges of values of

x and z sufficiently small to justify omission of

higher than second order terms in (13).

We remark that the approximate equilibrium (15) is more realistic

than the axact solutions (7), which distribute particles uniform-

ly on energy surfaces in six-dimensional phase space. There is




sufficient evidence that besides P H® there exists a further

’
constant of the motion, although sgch a constant may not be ex-
pressible as an analytic function of the phase space coordinates.
Replacing H® by HJ, HL; we give at least an approximate account
to the existence of a further constant of motion. Equilibria (15)

. . , . 10
were considered in a numerical model in ).

With (c) a spread of betatron and revolution frequencies due to
finite oscillation amplitudes is disregarded in our model. Thus
dispersion is introduced in our system of particles only by the
spread due to Pe. It seems reasonable to assume that a spread

of frequencies due to a finite range of betatron amplitudes has
an effect upon Landau damping and stability which is comparable
to the effect of an equally large spread produced by a finite
range of Pe. Moreover, there is some_evidence to assume that both

effects occur additively in the stability criteria 4).

3. Linear Perturbation Theory and Moment Equations

Small perturbations about the equilibrium (15)
(17) £ = £° + f!
are treated with the linearized version of (1).

Using the independence of f° of t, 6, we may Fourier analyze f'
with respect to these variables. The use of two further constants
HL%’ QL; in f° suggests to Fourier analyze also with respect to
the phase angles in x - u. and z - u,. Here, however, we are only
interested in modes with density variations in 6 direction and
beam displacement in r or z, corresponding to zero or first har-
monics in the transverse phase planes. Higher transverse harmo-
nics are neglected here, because they cause oscillations of the
beam cross section which in turn have a minor effect on the

collective field if y is large.




With ug replaced by Pe according to (6) we assume

i (16-wt
(18) £! = fl(x,ur,z,uz,Pe)el( W)
and find from (1)
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where we have used that
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(20) 441 SE! 2E! dug
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0 Py 0
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in first order, because P6 is an equilibrium constant of motion.

From (19) we derive first order expressions for the momenta

JE dr du_ dz duz, [xfl dr dur dz du, and fzf! dr du_ dz du,
which we need for calculating the beam displacement and current
modulation in terms of f!. Observing the subsequent relations
following from (6), (10), (11)

d

1 r,z,0
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aur,z,e W Y
8X dR Bue 1
P BPe mr

6 6
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and in first order in x, z, u_, u_ with v = _20
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We find from (19) after integrating over the transverse phase

space with

do

dr dur dz duz,

partial integrations and observing that f° is an even function

of X, Z, ur, uz
. : (Y, u 2B
(28) =-iw/xf'do + 11[;7xf do - Jf?f = -efereEE—dO
. 1 [y u26 e u, e
(29) -iwfu f do+1lj;7urfldo—J[ 5 m(Eg'Y z)]f d ——J(E +v eB;)f°do
1 ag df"
(30) =-iwff' do + ilJEVf do = —eJrEéaP ~=—do
(31) -iw/fzfdo + ilJ-u—ezfldo - rllgf1 =0
ry J Y
ug e Ug e . 1
(32) —1wfu £ do+1lJ—7u fldo-= f(Ez—ﬁrB ) £ldo== J(Ez—voeBz)f do

With further use of (27) and elimination of furfldo,

fuzfldc we

find the following expressions valid up to first order

i - a——-dR 1, € (play 1 0
(33) J[xfldo = IR B PeeEe+mYo(Er+V06Bz)F

\)12:92—((»—19)2
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(34) J[f'do = w-lQ[R mVoéY [xfl do— T (E REEY)
§)
(El—v BI)F°
1 - ‘Y r
(35) Jzf'do ;92-(w 19)2
Voe
(36) Q(Pe) = = (zero order gyro frequency)
(37) F°(Pe) = [f%do
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2 = Bz ext Er+R(E +VoeB self) (eEr) R

(38) vr(PG) = =p Bl T E0+v__.B 0 t nrv ®
B +=XL ¥ ootz 0870
Z Vop
01 01
(39) v2(P.) = Bz ext " R(Ez VoeBr self)
T ™ 0 0
V4 0 Bo E .ur '|‘VoeBz
= Voe

0 = 0

(40) Br,z - Br,z ext T Br,z self
R aBz ext
(41) n = B AT (magnetic field index)
Z ext

(All field terms are to be evaluated at r = R; z = O in (33)-(41)) .

2

The above defined vrz, v, ° are in agreement with the expression

)

for the betatron frequencies derived in 1 analyzing the particle

equations of motion in a stationary ring.

The local radial beam displacement as function of 6,t is defined
by

frfdodPe frf°doP6
TEdop, - [E0dodp,

(42) <>} =

= /(/xf'dc)apr, + [(R-<R>) (ff'do)dP

S 0

using the normalization

(43) JSfldo dp, = 1 and

(44) <R> = [rf°dodP, = [Rf’dodP,.
S} 0




The corresponding expression for the axial displacement is

(45) <z>' = [(/zf'do)adp,
The next quantity necessary for calculating the collective field
perturbations E!, B' is the perturbation of the azimuthal compo-
nent of the line currenct. Clearly, variations of the current
density over the beam cross section are not relevant in a first
order theory. Thus, from (4) with

)
due T mr
eru
(46) <3.>! = —|—2£'dodp
0 mjyr 6
and with (11), (27)
1 - 1 S Er(O)W 1
(47)..%34>" = EJQ[f dc—[ﬁ—ﬁ Vgg;gjfxf do)dp,

The transverse components of the line current perturbation are

written for completeness.

eru e
: 1 :___ . =1 1
(48) <j >' = T £'dodP, = —/(Y_R) (furf do]dPe
. eru e - X
(49) <3 > = —J?Ef dodPy = /(Y R) (fuzf dO)dPe

Thus we obtain from (33)-(35)
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(54) <JZ> = lm2J RYO v;QZ—(w-ln)zF dPe

From these formulas we draw the following conclusions:

(a) The axial perturbations (52), (54) are in agreement with

4)

the corresponding expressions in , which were derived

there for transverse oscillations of a straight beam.

(b) The radial perturbations (50), (53) differ from the
straight beam expressions by additional terms involving

the azimuthal electric field perturbation and the spread

in equilibrium radii R_;R>.
(c) The azimuthal current perturbation (51) has an additional

term which is related to the radial beam displacement and
introduces coupling between the radial and azimuthal co-
herent motions.

The relative importance of the different terms in (50)-(54) de-
pends on the mode under consideration and will be discussed in

the next chapter.

4. Dispersion Relations for Coherent Modes

The above established coupling between radial and azimuthal co-
herent motion depends quantitatively on the frequency w of the
mode. In the limit of vanishing collective field effects and no
dispersion the zeros of the denominators in (50)-(54) permit us

to classify the modes. For an observer gyrating with the particles

a perturbing field = el (18-wt) 1os a frequency 1Q-w. This field

may have a resonant action on the particles via




(a) their azimuthal motion (w=12 = 0O)
(b) their radial betatron oscillation ((w-lﬂ)z-v§92 = 0)
(c) their axial betatron oscillation ((w—lﬂ)z—v;Q2 ="0)

Next we assume finite, but not too strong self fields such that
for either mode (a), (b) or (c) only those terms have to be main-

tained in (50)-(54), which are associated with the respective
denominator.

We assume a linear dependence of the field perturbations at

r = <R> on the quantities <r>!, <je>1, <z>!

1 1 1 2 harl
(55) Er + VoeBz - Fr,r<r> + Fr,e<3>

1l . 1 (N |
(56) Ey = Fe’r<r> + F6,6<J>
where the coefficients F depend on w, 1 (in general) and follow

from the Maxwell equations solved with the respective boundary
conditions.

With the leading terms the dispersion relations are in the above

defined cases:

(a) Azimuthal mode (negative mass mode)
The last integrals in (50), (51) are rewritten after
partial integration.

R~<R> d ( R-<R> 1d9 gg% 0
= 1
Jw—lQ dPe(E RF®)dPg = JL(w—lQ)Z 3, u- 1Q]E9RF Ry
(57)
Jm-lQ a, (EgRF®)dPy = _JUw 19)2‘w-19]EeRF dPg
Evaluating Eé at r = <R> and discarding all contributions

ecxept that with the denominator (w-1Q)? we find the dis-

persion relation for the negative mass instability.




(58)

(b)

(59)

(60)

e RQ%%— R g%—
= 1 -— ——ﬁ-— 0 ______.i_ e oFo
15451 [mFe,eJ(w-lg)zF el o Fe,rJ(w-lQ)Z(R *R2)28 APy

The second term expresses coupling to the radial motion
through the variation in equilibrium radius and is in
general small. The dominant first term agrees with the

familiar negative mass dispersion relation Lee)

and we
conclude that curvature has not an important effect on

this mode as long as (w=1Q) << 10 and (w-1Q) << vrQ.

Radial-azimuthal mode
Terms in (50)-(52) with the denominator \)rZQZ—(w—lQ)2

contribute to this mode. Omitting the small term asso-
R-<R>

ciated with R

and neglecting

compared with unity, we find

e w=10 e Q 1 w=1Q
1 = {i—=F, _+F
myo Vo Q°0,r

)
r,r mn’e-18 R('VZ0 Fe,e+Fr,eJ}'D

= F° y
2= JerQZ—(w—ln)zdpe

Here we have replaced for simplicity the @, R, V.. by their
average values, unless they occur in the denominator

vrzﬂz-(w-ln)z,and have used the relation

dR 1

~

- 2
dPe mYovoe\)r

which follows from (10).

(59) differs from the straight beam result 4) by two
additional force terms in the brackets; the first term
is relating the radial displacement with Ee1 via the
centrifugal force in the radial equation of motion; the
third term includes the contribution of the azimuthal

current modulation to the collective fields. Such a term
appears because the azimuthal component of the particle

motion obeys (see (27))




(61)

(62)

(63)

(64)

(65)

(66)

8 = a(1-§)

Hence it oscillates synchronous with the radial frequency
and is driven therefore by the same oscillating collec-
tive field that drives the radial coherent motion. This
term vanishes for w - O, because in this limit the local
beam center moves perpendicular to the collective field
which suppresses an azimuthal density modulation. In the
limit of vanishing collective effects and dispersion the
modes solving (59) are given by

w = (livr)Q

The lower sign refers to the "slow wave", the upper sign
to the "fast wave".

Inserting (62) into (59) gives

e Fe - e 1 1 Fo g
1 = — {ti—= + F - —=w(t—)z|ti—— + F }+D
my g m ) v

r r r

for either wave.

In the low frequency case, i.e. 1 = Vs the slow wave
leads to the dispersion relation

e -i

1= — {

+ F D.
my }

TrFe,r r,r

We solve (64) for a ring with the realistic distribution

Pe—<Pe> ‘ l AR
-——A—ﬁg——-)z for EPe"<Pe>|<

® otherwise F°=0

F°(Pe) x| 1=-(2

o]
4

and find after evaluating D in essentially the same way

3)

as in a criterium for Landau damping

where AS is the full spread of the quantity




(67)

(68)

(69)

(70)

(71)

(72)

S E (1—vr)Q
due to the spread in Pe and U is real and here defined
by
it
e {_TFe,r+Fr,r} = 2 monvr(U+(1+1)V).

V > O is induced by finite resistivity of the walls due

4)

to image current damping . U is interpreted as the
shift of the coherent frequency due to collective effects
in the limit of vanishing dispersion and V << U as follows

from (64), (68), i.e.

+ U

€
I
n

Thus criterium (66) requires that the distribution in S
is broad enough to cover the shifted frequency w, other-
wise there are no particles in phase with the coherent

wave and there is no Landau damping.

With the following definition for the Landau damping co-

efficient
- Eds = g LE
K = 5 ag’ AS = K T

(66) is converted into a criterium involving the energy
AE
spread — and K:

E
k| » 30 . 3 U
T AE ~ AE
E 4 EUFH

For most of the electron ring applications |K| is in the
range O ....2 and we conclude that Landau damping in the
low frequency case is possible only if the average value
of S obeys :

£8>, 55 Uy




otherwise the mode is unstable (V > O, finite resistivity)
or purely oscillatory (V = 0O). We observe that the same
arguing holds if the considered mode is driven by reso-

nant interaction with a ring of oppositely charged par-
ticles, which renders criterium (71) a necessary crite-

rium for stabilizing the electron-ion instability ¥).

For a ring in free space with the mode 1 = 1 and w << Q

we apply the results for the self-fields of a stationary
12)

ring on the coherently shifted ring and find in the

unshifted coordinate system

1 . \ 4R? 1 16R 1
e(E +v B ) = my_Q%u a(arb) Y, ? + 21ln—p| <r>
(73) . , 16R g
e.E6 = -1mon ulna+b<r>
a, b radial and axial semi axi
Vv Nré
u = 7 = 2nRy’,re classical electron radius
Thus we find
Q 4R* 1 16R
749 0= 5w a7t as

The logarithmic term in U is due to curvature and domi-
nates for large y over the straight beam term. As an
example we take

-3
no= 370 % = % = 10, y = 30
AE _
|K|$2, —E—=101

and find that (71) can be satisfied only if

*
)A sufficient criterium must involve also dispersion of
the ion species as observed already in 5).




- G =

- -1
(75) (1 vr) 2 10

whereas omission of the curvature term would allow for
the much larger range (1-v_) 2 51073

(c) Axial mode

There is no coupling to the azimuthal motion and the dis-
persion relation shows the familiar result 4)

e FO
78 1= Fz,zf\)zzﬂf-(w—lﬂ)z Py
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